
Embedded

Workshop

Applicable Technologies Requirements Contact

Fee (net per person) DurationInclusive

Agenda

Online Live

OL

plc2.com

Workshop

WO

Embedded Linux Driver Development

Processor based embedded 
Linux systems like AMD Zynq ™ 
and others

Knowledge of working with 
the Linux-Shell, use Makefiles, 
create and change C-programs. 
Basic knowledge of processor 
and FPGA hardware.

Michael Schwarz
P. +49 7664 91313-15
E. info@plc2.de 

3 days€ 1,900 Training material 

Plus beverages during breaks
Lunch

€ 2,300 3 days

Today, semiconductors are used in almost every 
device. The multitude of applications in connecti-
vity and multimedia applications in more and more 
complex devices makes the development of custom 
device drivers with the Linux kernel a severe task.

This course sets the stage for shortened develop-
ment time by equipping participants with the know-
ledge to design their own device driver using all 
major kernel interfaces and structural elements.
Through hands-on learning with more than 50 % 
practical exercises, participants gain confidence in 
using the kernel components needed for a particu-
lar project, as well as a solid understanding of the 
overall framework.

The main focus of this course is the character drivers, 
platform drivers, and the sysfs interface. Additio-
nally, the fundamentals of the Linux DMA API are 
discussed.

The workshop is designed for engineers to gain the 
knowledge and skills about the components of the 
Linux kernel using such for successful device driver 
development.

Due to accompanying exercises, the course offers 
in-depth and practice-oriented training. Attendees 
of the online live course will do the practical exerci-
ses in the afternoon on their own.

01. Linux basics for driver development  
 Layers of a Linux system   
 Virtual, logical and physical addressing 
 Minimal kernel module  
 

02. Character drivers    
 Device numbers, files and numbers   
 structure    
 Dynamic memory allocation  
 

03.  Platform drivers    
 Device tree    
 I/O hardware access and managing   
 clocks     
 Interrupts     
      
      
      
      
      
      
      
      
      
      
      
 

04.  Timing and working    
 Linux timing mechanisms and delay  
 Kernel threads, softirqs, tasklets   
 and work queues    
 Jiffies, high resolution timers 
 

05.  Synchronisation    
 Mutex and semaphores, Mutexes  
 Spinlocks, Atomics, Completions   
 and wait queues   
 

06.  Controlling a driver    
 Ioctl, sysfs    
 Sysfs with binary attributes


